CPQS

团

体

标

T/CPQS XXXXX—XXXX

道路车辆 由传导和耦合引起的电骚扰 沿高压屏蔽电源线的电瞬态传导

Road Vehicles-Electrical disturbances by conduction and coupling- Electrical transient conduction along shielded high voltage supply lines only

(ISO/TS 7637-4:2020, IDT)

(征求意见稿)

XXXX-XX-XX 发布

XXXX - XX - XX 实施

前言

本标准按照GB/T 1.1—2009给出的规则起草。 本标准由中国汽车工程研究院股份有限公司提出。 本标准由中国消费品质量安全促进会归口。 本标准起草单位: 本标准主要起草人:

目 次

前	言	I
目	次	II
1	范围	1
2	 规范性引用文件	1
3	术语和定义	1
4	试验方法	1
	4.1 概述	1
	4.2 标准试验条件	2
	4.3 接地平面	
	4.4 一般试验布置条件	
	4.5 高压电源线上的电压瞬态发射试验	
	4.6 高压电源线的瞬态抗扰度试验	
	试验仪器描述和规范	
	5.1 高压人工网络(HV-AN)	
	5. 2 高压电源	
	5.3 测量仪器	
	5.4 高压电池或电源的负载	14
附	录 A (规范性附录) FPCS 及试验严酷等级示例	15
Α.	1 概述	15
	A. 2. 1 试验脉冲 A (脉冲正弦波骚扰)	15
	A. 2. 2 试验脉冲 B (低频正弦波骚扰)	15
附	录 B (规范性附录) 瞬态电压波形评估	17
В.		17
В.		
	3 电压波形特征和瞬态发射的分类	
	B. 3. 1 试验脉冲 A (脉冲正弦波骚扰)	
	B. 3. 2 试验脉冲 B (低频正弦波骚扰)	
附	录 C (资料性附录) 试验脉冲发生器及其验证	20
	1 概述	
	1 做还	
	C. 2. 1 试验发生器(脉冲 A,脉冲正弦波骚扰)	
	C. 2. 2 脉冲 A (脉冲正弦波骚扰)线一线耦合的耦合平衡一不平衡转换器(表面电流滤波器)	
	C. 2. 3 试验发生器(脉冲 B, 低频正弦波骚扰)	
	C. 2. 4 脉冲 B(低频正弦波骚扰)耦合 HV+或 HV-以及 HV+或 HV-与地之间的耦合网络	
	V. Z. T MIT D \ IM/次工 MX知儿 / 個 D III '	∠1

道路车辆 由传导和耦合引起的电骚扰 沿高压屏蔽电源线的电瞬态传导

1 范围

本文件规定了安装在电气系统电压大于 60VDC 小于 1500VDC 的乘用车和商用车上,且电源与车身隔离的设备的高压屏蔽电源线的传导电瞬态的试验方法和程序。

本文件描述了瞬态注入和瞬态测量的台架试验。

本文件适用于所有类型的电气独立驱动的道路车辆(例如,纯电动汽车(BEV)、混合动力汽车(HEV)或插电式混合动力汽车(PHEV)。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 21437.1 道路车辆 由传导和耦合引起的电骚扰 第1部分: 定义和一般描述

3 术语和定义

GB/T 21437.1 确立的术语和定义适用于本部分。

4 试验方法

4.1 概述

不同装置开关产生的不同类型的瞬态会出现在高压电源线上。脉冲 A 代表由高压半导体的开关操作产生的振铃。脉冲 B 代表由电驱动电机的旋转以及电网谐波产生的正弦波,如电动机。

本文件涉及的高压屏蔽电源线的瞬态发射测量方法以及装置的瞬态抗扰性试验方法,均为"台架试验",在试验室中进行。

台架试验方法可为实验室间提供可比较和可复现的结果。这些方法还可作为设备和系统研发的试验依据,并可在生产阶段使用。

评估装置的电源线瞬态抗扰性的台架试验,可采用试验脉冲发生器的方法。但这种方法并没有涵盖 所有可能出现在车辆上的各种瞬态。因此,5.2 中所描述的试验脉冲均为典型脉冲。

在特殊情况下,可能需要施加附加的试验脉冲。但是,如果某装置因其功能或连接情况,而不受车辆内类似瞬态的影响,则可以忽略某些试验脉冲。车辆制造商可对特定设备定义所需的试验脉冲。

有两种类型的骚扰:

- •脉冲正弦波骚扰(波形 A);
- 低频正弦波骚扰 (波形 B)。

高压电源线路上的电压纹波(方波)通常是由大电流的切换引起的。例如,在电动机系统或 dc - dc 转换器的 IGBT 阶段。电压纹波同时产生共模和差模扰动(线对地(HV+或/和 HV-对地)和线对线(HV+对 HV-))。试验脉冲 A 用于高频振荡试验,例如快速开关。

试验脉冲B用于设备对瞬态电压的试验。

在测试过程中,受试装置(DUT)应工作在产生最大骚扰和最敏感的典型条件下。对于每个试验和频率步长,这是最坏的情况。DUT的工作条件应由车辆制造商和供应商进行协商,并记录在试验计划中。

4.2 标准试验条件

试验温度和电源电压(低压)应使用 GB/T 21437.1 规定的标准试验条件。

高压电源电压 $U_{\rm A}$ 的变化范围为 60VDC \sim 1500VDC。DUT 工作时使用的电池/发电机的高压及其允差应由车辆制造商和供应商进行协商,并记录在试验计划中。

4.3 接地平面

接地平面应采用至少 0.5mm 厚的铜板、黄铜板或镀锌钢板。

除非试验计划另有规定,否则接地平面的最小宽度应为 **1000 mm**,或比整个布置宽度(不包括电源和瞬态脉冲发生器)的两边大 **200mm**,两种情况取其大者。

除非试验计划另有规定,否则接地平面的最小长度应为 2000 mm,或比整个布置长度(不包括电源和瞬态脉冲发生器)的两边大 200mm,两种情况取其大者。

4.4 一般试验布置条件

DUT 应根据其要求进行布置和连接。除非车辆制造商和供应商之间另有规定,否则 DUT 应连接实车工作装置(负载、传感器等),应使用 4.5.2、4.6.2.1、4.6.3.1 所述的试验布置。

如果没有 DUT 实际工作的信号源,则可以使用模拟信号源。

除非试验计划另有规定,否则所有负载、传感器等的地(线路、金属外壳)都应连接到接地平面。 为了最大程度地减小与 DUT 的额外电容耦合,建议 DUT 与所有其他导电结构(例如屏蔽室的壁面, 但试验布置下方的接地平面除外)之间的最小距离需大于 0.5m。

4.5 高压电源线上的电压瞬态发射试验

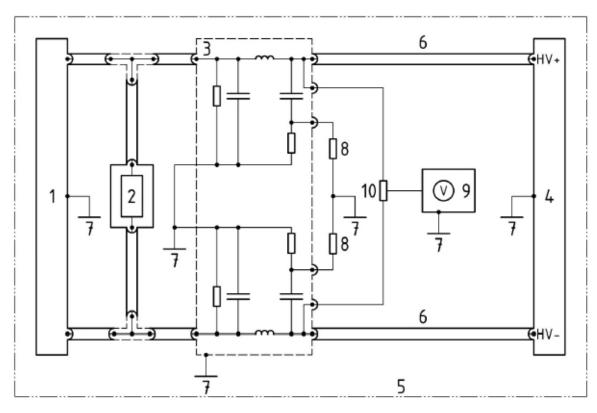
4.5.1 概述一试验方法

被认为是潜在传导骚扰源的 DUT 应按照本节中描述的程序进行试验。

瞬态应在 HV+和 HV-(线对线)之间以及分别在 HV+和地、HV-和地(线对地)之间进行测量。 应注意确保测量布置不会受到周围电磁环境的干扰。

4.5.2 瞬态发射试验布置

为规范 DUT 的阻抗负载,测量 DUT 的电压瞬态要使用高压人工网络(HV-AN)(见 5.1)。DUT 通过人工网络连接到高压电源(见 5.2),如图 1 所示。


如果试验计划未另行规定,则高压电源线的长度应为 500mm (+200mm/0mm)。所用的电缆长度应记录在试验报告中。

DUT 的接地应连接到接地平面。如果试验计划未另行规定,则接地线的默认长度为 200mm(\pm 50mm)。如果 DUT 具有金属外壳,则该外壳应搭接到接地平面。接地连接的直流电阻不应超过 2.5m Ω 。

与车辆应用一致,DUT 应放置在接地平面上。如果未有其他规定,则 DUT 以及人工网络和 DUT 之

间的所有连接线均应放置在接地平面上方(50±5)mm 处的非导电、相对介电常数低($^{m{arepsilon}_{
m r}}$ \leqslant 1.4)的材料上。

电源电压 $U_{\rm A}$ 和骚扰电压应使用电压探头和示波器或波形采集设备在近 ${\rm DUT}$ 电源端子处进行测量(见图 1)。

说明:

- 1----高压电源(可选:屏蔽和/或滤波);
- 2——高压电池的负载(如有必要,见5.4);
- 3——高压人工网络;
- 4-----DUT:
- 5——接地平面;
- 6——高压电源线;
- 7——接地连接;
- 8----50 Ω 终端;
- 9——示波器或等效设备;
- 10——高压差分探头。

图 1 测量高压电源线上电压纹波的瞬态发射试验布置

图 1 示出了在 HV +和 HV-之间进行测量的试验布置。为了在 HV +与地之间或 HV-与地之间进行测量,电压探头的另一端子应接地。

4.5.3 发射试验程序

测量时应考虑 DUT 的各种工作模式和工作条件,并在试验计划中进行规定。

测得的瞬态应根据附录 B 进行评价。测量结果应记录在试验报告中。

电压幅度和瞬态参数(上升时间、下降时间、瞬态持续时间)应予以记录,并在试验报告中给出。

4.6 高压电源线的瞬态抗扰度试验

4. 6. 1 概述一试验方法

4.6 给出了瞬态抗扰度试验的试验布置和试验过程。

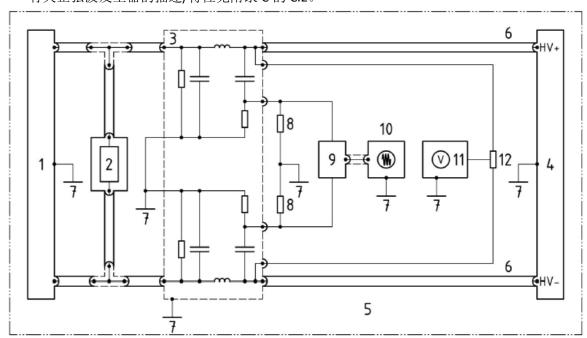
如果未有其他规定,则所有瞬态试验都应在 HV +和 HV-(线对线)之间以及分别在 HV +和地之间、HV-和地(线对地)之间进行。

4.6.2 脉冲 A (脉冲正弦波骚扰) 的抗扰度试验

4. 6. 2. 1 试验布置

图 2 示出了 HV+和 HV-之间耦合的试验布置。

图 3 示出了 HV +与地之间耦合的试验布置示例。发生器的下端子应接地。其上端子应通过 HV-AN(如图 3 所示)连接到 HV+或 HV-。相应地,电压探头的一个端子需分别连接到 HV+或 HV-;另一个端子则需接地。

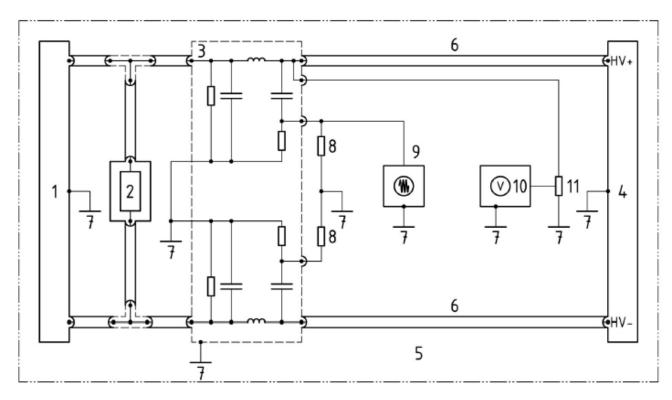

如果试验计划未另行规定,则高压电源线的长度应为 500mm (+200mm/0mm)。所用的电缆长度应记录在试验报告中。

DUT 的接地应连接到接地平面。如果试验计划未另行规定,则接地线的默认长度为 200mm(\pm 50mm)。如果 DUT 具有金属外壳,则该外壳应搭接到接地平面。接地连接的直流电阻不应超过 2.5m Ω 。

与车辆应用一致,DUT 应放置在接地平面上。如果未有其他规定,则 DUT 以及人工网络和 DUT 之

间的所有连接线均应放置在接地平面上方(50±5)mm 处的非导电、相对介电常数低(\mathcal{E}_{r} \leq 1.4)的材料上。

有关正弦波发生器的描述/特性见附录 C 的 C.2。



说明:

- 1---高压电源(可选:屏蔽和/或滤波);
- 2——高压电池的负载(如有必要,见5.4);

- 3——高压屏蔽人工网络;
- 4----DUT;
- 5——接地平面;
- 6——高压电源线;
- 7——接地连接;
- 8----50 Ω 终端;
- 9——平衡-不平衡变压器 (见图 C. 2);
- 10——正弦波发生器;
- 11——示波器或等效设备;
- 12——高压差分探头。

图 2 脉冲 A (脉冲正弦波骚扰)的瞬态抗扰度试验布置("线对线"示例)

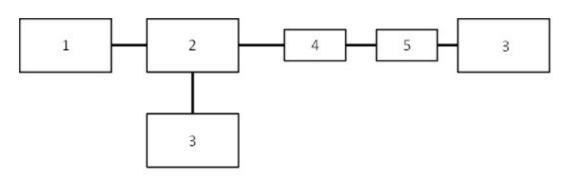
- 1——高压电源(可选:屏蔽和/或滤波);
- 2——高压电池的负载(如有必要,见 5.4);
- 3——高压屏蔽人工网络;
- 4----DUT;
- 5——接地平面;
- 6——高压电源线;
- 7——接地连接;
- 8----50 Ω 终端;
- 9——正弦波发生器;
- 10——示波器或等效设备;
- 11——高压差分探头。

图 3 脉冲 A (脉冲正弦波骚扰)的瞬态抗扰度试验布置("HV+线对地"示例)

4. 6. 2. 2 试验过程

在试验之前,应按照 4.6.2.3 和 4.6.2.4 的规定设置脉冲 A 的试验电压和波形。试验电平的描述见表 A.1。

应按照图 2 和图 3 所示的两种配置进行试验:


- ——发生器(标号 10)通过不平衡变压器(标号 9)和 HV-AN(标号 3)连接到 HV +和 HV-,示波器(标号 11)和 HV 探头(标号 12)连接到 HV+和 HV-;
- ——发生器(标号 9) 通过 HV-AN(标号 3) 连接到 HV +和 HV-, 示波器(标号 10) 和 HV 探头(标号 11) 分别连接到 HV +或 HV-。

将发生器连接到试验布置。

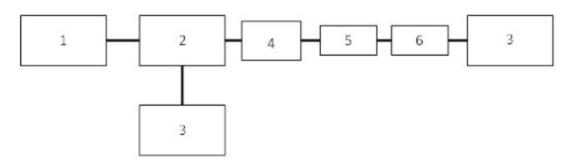
4.6.2.3 电平设置程序(线对地)

按照以下步骤开展试验:

- a) 设置脉冲频率;
- b) 连接功率计以测量试验发生器的输出(见图 4);
- 注:可能需要衰减器以保护功率计的输入端。
- c) 记录试验发生器的输出端获得所需试验电平(见表 A. 2)(无调制)时的前向功率;
- d) 对所有脉冲频率重复步骤 a) ~b)。

说明:

- 1——发生器;
- 2——定向耦合器;
- 3——功率计;
- 4---50 Ω 负载 (如果所用测量设备为 50 Ω 阻抗,则不需要);
- 5——衰减器(可选)。


图 4 设置线一地电平的试验布置

4.6.2.4 电平设置程序(线对线)

按照以下步骤开展试验:

- a) 设定脉冲频率;
- b) 连接功率计以测量试验发生器的输出。平衡-不平衡转换器应端接 50Ω负载(见图 5);
- 注:可能需要衰减器以保护功率计输入端。
- c) 记录试验发生器的输出端获得所需试验电平(见表 A.1)(无调制)时的前向功率;

- d) 在各个脉冲频率,通过加上平衡-不平衡转换器的修正因子对前向功率进行修正;
- e) 对所有脉冲频率重复步骤 a)~d)。

- 1---发生器;
- 2——定向耦合器;
- 3——功率计:
- 4---平衡-不平衡转换器
- 5——50 Ω 负载 (如果所用测量设备为 50 Ω 阻抗,则不需要);
- 6----衰减器(可选)。

图 5 设置线一线电平的试验布置

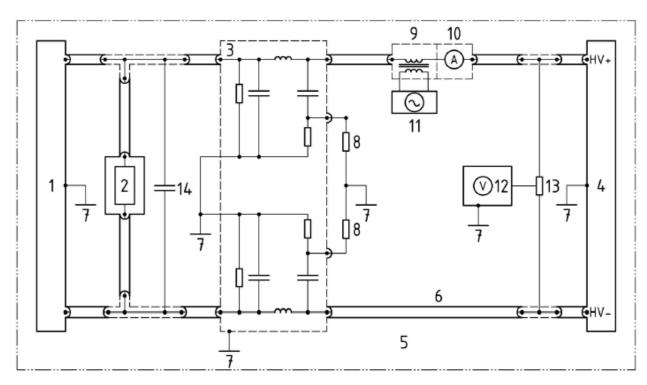
4.6.3 脉冲 B(低频脉冲正弦波骚扰)的抗扰度试验

4.6.3.1 试验布置

图 6 示出了耦合给 HV+或 HV-的试验布置。

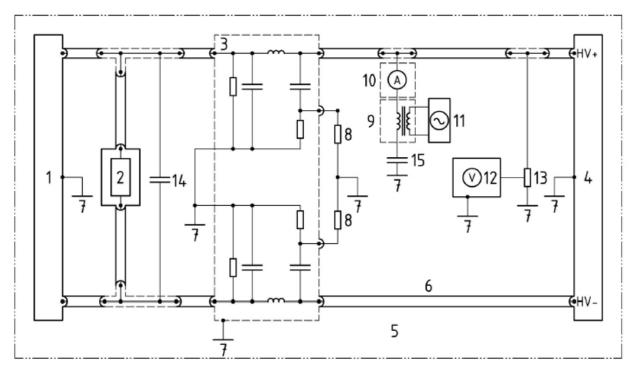
图 7 给出了 HV +与地之间耦合的试验布置示例。耦合变压器的下端子应通过电容器接地。其上端子应连接到 HV+(如图 7 所示)或 HV-。相应地,电压探头的一个端子需分别连接到 HV+或 HV-;另一个端子则需接地。

取决于 DUT 和电源,最小为 100µF 的电容器应跨接在高压电源上。


可选的电流监测设备旨在测量耦合的脉冲电流而非 EUT 的电流。

DUT 的接地应连接到接地平面。如果试验计划未另行规定,则接地线的默认长度为 200mm(\pm 50mm)。如果 DUT 具有金属外壳,则该外壳应搭接到接地平面。接地连接的直流电阻不应超过 \pm 2.5m \pm 0 。

与车辆应用一致,DUT 应放置在接地平面上。如果未有其他规定,则 DUT 以及人工网络和 DUT 之


间的所有连接线均应放置在接地平面上方(50 \pm 5)mm 处的非导电、相对介电常数低($\mathcal{E}_r \leq 1.4$)的材料上。

有关低频正弦波发生器和耦合变压器的描述见附录 C 的 C.2.3 和 C2.4。

- 1——高压电源(可选:屏蔽和/或滤波);
- 2——高压电池的负载(如有必要,见5.4);
- 3——高压屏蔽人工网络;
- 4——DUT;
- 5——接地平面;
- 6——高压电源线;
- 7——接地连接;
- 8----50 Ω 终端;
- 9——耦合变压器;
- 10——电流监测设备(可选);
- 11——低频发生器;
- 12——示波器或等效设备;
- 13——高压差分探头;
- 14——电容器(如果使用高压电源代替电池,则电容器≥100µF。)

图 6 脉冲 B (低频正弦波骚扰瞬态) 抗扰度试验布置 (串联注入"HV+" 示例)

说明:

- 1---高压电源(可选:屏蔽和/或滤波);
- 2——高压电池的负载(如有必要,见5.4);
- 3——高压屏蔽人工网络;
- 4——DUT;
- 5——接地平面;
- 6——高压电源线;
- 7——接地连接;
- 8----50 Ω 终端;
- 9——耦合变压器;
- 10——电流监测设备 (可选);
- 11——低频发生器;
- 12——示波器或等效设备;
- 13——高压差分探头;
- 14——电容器(如果使用高压电源代替电池,则电容器≥100µF;)
- 15——电容器;例如 100 nF (应针对使用频率调整该电容值)。

图 7 脉冲 B(低频正弦波骚扰瞬态)抗扰度试验布置("HV+线对地"示例)

4.6.3.2 试验过程

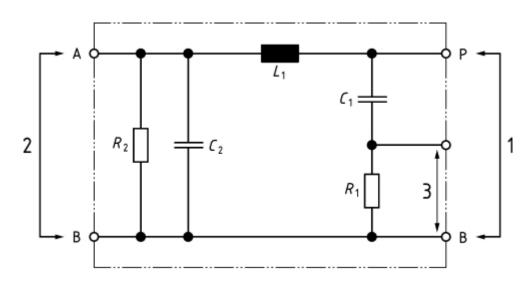
在试验之前,应在无负载的情况下设置脉冲 B 的试验电压和波形。试验电平描述见表 A.2。应按照图 6 和图 7 所示的两种配置进行试验:

- ——发生器(标号 11)和耦合转换器(标号 9)串接 HV+,示波器(标号 12)和 HV 探头(标号 13)连接在 HV+和 HV-之间;
 - ——发生器(标号 11)和耦合变压器(标号 9)连接在 HV +和地之间,示波器(标号 12)和 HV

探头(标号 13) 连接 HV+。

将发生器连接到试验布置。

5 试验仪器描述和规范


5.1 高压人工网络(HV-AN)

应使用如图 8 所示的 $5\mu H/50 \Omega$ 高压人工网络(HV-AN)。

HV-AN 应直接放置在接地平面上。HV-AN 的接地线应与接地平面相连接。接地连接的直流电阻不应超过 $2.5 m\,\Omega$ 。

HV-AN 的测量端口应端接 50 Ω 负载。

图 9 示出了 $0.1 \text{MHz}^{\sim} 100 \text{MHz}$ 的测量频率范围内 HV-AN 的阻抗特性 Z_{PB} (允差为±20%)。图 9 所示的端子 P 和端子 B 之间的阻抗 Z_{PB} 是在图 8 所示的端子 A 和端子 B 短路,测量端口端接 50Ω 时测得的。

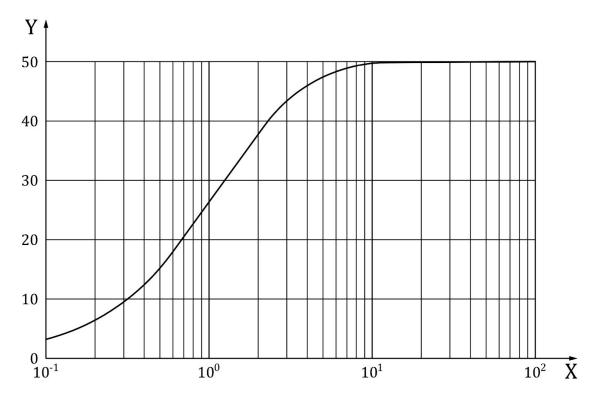
说明:

1——DUT 端口;

2---电源端口;

3——测量端口;

 L_{1}_{--5} µ H:

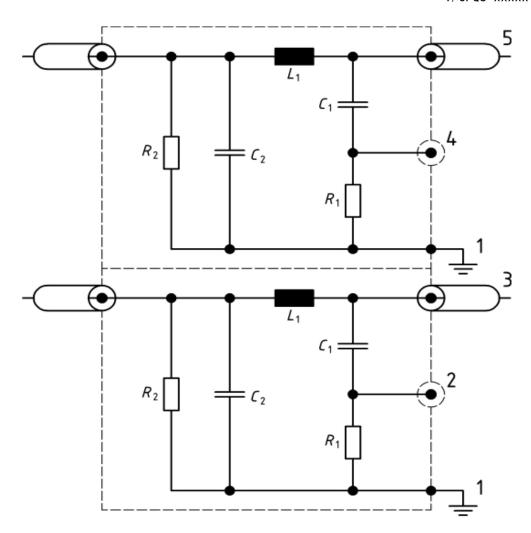

 $C_{1--0.1 \mu F}$:

C₂——0.1 μ F (默认值);

 $R_{1--1k\Omega}$:

 R_2 ____1MΩ (60s 内将 C2 放电至<50 Vd. c.)。

图 8 5 μ H/50 Ω HV-AN 原理图示例



X——频率,MHz;

Y——阻抗 Z_{PB} 。

图 9 HV-AN 的特性阻抗

如果在单个屏蔽盒中使用未屏蔽的 HV-AN,则应在 HV-AN 之间放置一个内屏蔽体,如图 10 所示。

1——地;

2---测量端口 HV-;

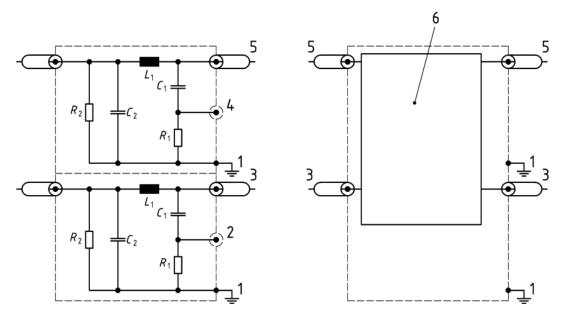
3----电源线 HV-;

4---测量端口 HV+;

5----电源线 HV+;

 L_{1} ——5 μ H;

 C_1 —0.1 μ F;


 C_2 ——0.1 μ F (默认值);

 R_1 —-1k Ω ;

 R_2 ——1MΩ(60s 内将 C_2 放电至<50 Vd.c.)。

图 10 单个屏蔽盒中 5 μ H/50Ω HV-AN 组合示例

可使用图 **11**(标号 **6**)所示的可选阻抗匹配网络用于模拟从连接 HV 电源的 DUT 向 HV-AN 方向看过去的共模阻抗/差模阻抗。如果使用此阻抗匹配网络,则应在试验计划中进行规定。

- 1---地;
- 2---测量端口 HV-;
- 3---电源线 HV-;
- 4---测量端口 HV+;
- 5---电源线 HV+;
- 6——差模阻抗和共模阻抗匹配网络(可选,在试验计划中规定);
- L_{1} $5\mu H$;
- C_1 —0.1 μ F;
- C_2 —0.1 μ F (默认值);
- R_1 —-1k Ω ;
- R_2 ——1MΩ(60s 内将 C_2 放电至<50 Vd.c.)。

图 11 具有阻抗匹配网络连接 DUT 的 HV-AN

5.2 高压电源

高压电源应能在其规定的额定电压和电流范围内为 DUT 供电。最大噪声纹波 Upp 应不大于标称电压的 1.5%。

5.3 测量仪器

应使用满足以下参数具有电压探头的示波器或波形采集设备。

- ——带宽: 直流到至少 400 MHz:
- ——采样率: 至少 2GHz/s (单次触发模式)。

电压测量可以使用差分探头或两个匹配的探头。

注:两个高压探头分别连接到 HV+和 HV-。两个探头的接地带均需连接到接地平面,为的是提供电压基准及其确保安全性。示波器显示 HV+和 HV-之间的差分电压(例如 CH1-CH2 功能)。

差分探头特性:

——带宽: 直流到至少 100MHz;

——输入阻抗: 直流时 Z≥1MΩ。
电压探头特性:
——带宽: 直流到至少 200MHz;
——输入阻抗: 直流时 Z≥1MΩ;
——电容: ≤10pF;
——衰减: 100: 1。

5.4 高压电池或电源的负载

对于高压电池或电源的基本负载,可以使用具有以下参数的电阻器与电容器的并联:

- ——电阻器: R=500Ω+/-5%; ——电容器: C=10μF+/-10%
- ——10kHz 时的等效串联电阻 ESR <5m Ω ;
- ——最小电流承载能力: 10kHz 时为 50Arms (电流承载能力应适合试验电压)。

附录A (规范性附录) FPCS 及试验严酷等级示例

A. 1 概述

本附录给出了试验脉冲严酷等级的示例,功能状态分类(PFSC)应符合 GB/T 21437.1 规定。

A. 2 高压试验脉冲严酷等级的分类

A. 2.1 试验脉冲A(脉冲正弦波骚扰)

表A. 1给出了脉冲A推荐的高压系统的最低和最高严酷等级。

车辆制造商和设备供应商在达成一致的情况下,可协商选取表A. 1中的所给值或各值之间的值作为试验电平和试验时间。如果未规定特定值,推荐使用表A. 1中给出的等级。

脉冲频率	试验电压 Upp (V) a			每个脉冲	猝发循环时间	试验持	耦合方式	
(MHz)	严酷等级			包的振荡	(μs)	续时间		
	I	II	III	IV			(min)	
1								HV+与 HV-
2								之间、
5	20	50	100	b	10	200/100/50	5/5/5	HV+与地
10	1							之间、HV-
								上地 ラ 词

表 A. 1 试验脉冲 A (脉冲正弦波骚扰) 的参数

A. 2. 2 试验脉冲B(低频正弦波骚扰)

表A. 2给出了脉冲B推荐的高压系统的最低和最高严酷等级。

车辆制造商和设备供应商在达成一致的情况下,可协商选取表A. 2中的所给值或各值之间的值作为试验电平和试验时间。如果未规定特定值,推荐使用表A. 2中给出的等级

[&]quot;试验电压应设置为 50Ω负载。详细信息应在试验计划中定义。

严酷等级与 HV 标称电压有关 (例如 5%~10%)。

^b特殊应用的严酷电平等级:详细信息应在试验计划中定义。

表 A. 2 试验脉冲 B (低频正弦波骚扰) 的参数

脉冲频率	频率步长	试验电压 Upp (V)°			每步长驻留	耦合方式	
(MHz)			严酉	告等级		时间 (猝发宽	
		I	II	III	IV	度)(s)	
可选项: 〈3kHz ^a	a	a	a	a	b		HV+与HV- 之间、
3kHz~30kHz	例如 1kHz	5	15	25	b	2	HV+与地 之间、HV-
30kHz~300kHz	例如 10kHz	0.5	1.5	2. 5	b		与地之间

[&]quot;相关谐波<3kHz的应用可选的试验频率和严酷等级:详细信息应在试验计划中定义。 严酷度电平与 HV 标称电压有关(例如 5%~10%)。

A. 3 使用试验脉冲严酷等级的FPSC应用示例

表 A.3 给出了严酷等级的示例。对于每种脉冲以及不同的高压电动汽车系统,此表可能会有所不同 (等级源自表 A.1 和表 A.2)。

表 A. 3 FPSC 等级示例

	类别 1	类别 2	类别 3
L4i	等级 IV	等级 IV	等级 IV
L3i	等级 III	等级 IV	等级 IV
L2i	等级 III	等级 III	等级 IV
L1 i	等级 III	等级 III	等级 III

^b特殊应用的严酷电平等级:详细信息应在试验计划中定义。

[°]试验电压设置应在开路负载条件下。

附 录 B (规范性附录) 瞬态电压波形评估

B. 1 概述

本附录的目的是提供一种评价方法,以表征根据 4.5 中的定义测得的骚扰源的瞬态发射。

B. 2 瞬态发射波形特性的基本要素

评价波形特性需考虑以下波形参数(有关定义见 GB/T 21437.1)。 发射限值应根据附录 A 中的严酷度等级得到。 波形参数的指定缩写见表 B.1。

表 B. 1 术语和缩写

参数	GB/T 21437.1 中的定义	缩写
峰值	3.12	$U_{\rm s}(U_{\rm s1},\ U_{\rm s2})$
脉冲宽度	3.13.1	$t_{ m d}$
脉冲上升时间	3.13.2	$t_{ m r}$
脉冲下降时间	3.13.3	$t_{ m f}$
脉冲重复时间	3.14.4	t_1
猝发宽度	3.14.1	t_4
猝发间隔时间	3.14.2	t_5
猝发循环时间	3.14.3	$t_4 + t_5$

B. 3 电压波形特征和瞬态发射的分类

B. 3. 1 试验脉冲A(脉冲正弦波骚扰)

图 B.1 示出了脉冲 A 的波形,表 B.2 给出了脉冲 A 的参数。

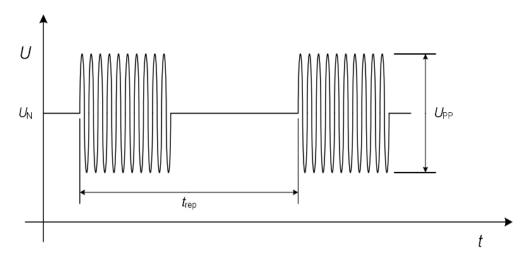
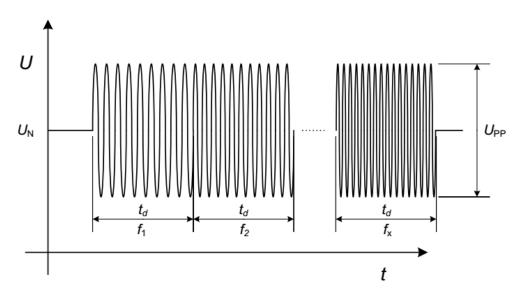



图 B. 1 试验脉冲 A (正弦波脉冲), 例如在 HV+线上 表 B. 2 试验脉冲 A (脉冲正弦波骚扰)的参数

参数	标称值
$t_{ m rep}$	猝发循环时间,参见表 A. 1
每猝发的振荡数	10
$U_{ m pp}$	试验脉冲电压,参见表 A. 1
$U_{ m N}$	DUT 的标称电压(HV+与 HV-之间)

B. 3. 2 试验脉冲B(低频正弦波骚扰)

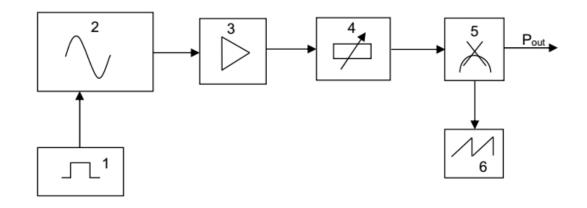
图 B.2 示出了脉冲 B 的波形,表 B.3 给出了脉冲 B 的参数。

图 B.2 试验脉冲 B (低频正弦波骚扰)

表 B. 3 试验脉冲 B (低频正弦波骚扰) 的参数

参数	标称值
$\int_{1} f_{x}$	试验脉冲频率,参见表 A. 2
$t_{ m d}$	猝发宽度, 2s
$U_{ m pp}$	试验脉冲电压,参见表 A. 2
$U_{ m N}$	DUT 的标称电压(HV+与 HV-之间)

附 录 C (资料性附录) 试验脉冲发生器及其验证


C. 1 概述

本附录的目的是给出试验脉冲发生器的定义和验证方法。

- C. 2 试验脉冲发生器和耦合网络
- C. 2.1 试验发生器(脉冲A,脉冲正弦波骚扰)

试验发生器应具有以下射频特性:

- ——频率范围: 1MHz~10MHz;
- ——阻抗: 50Ω (标称值);
- ——所需试验电平的输出功率(例如: 100Vpp 时 Pout 为 25W/300Vpp 时 Pout 为 225W)。

说明:

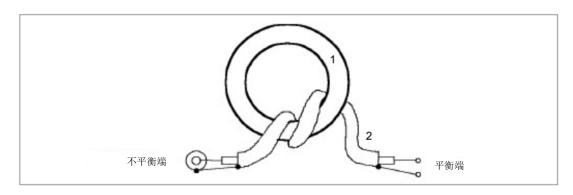

- 1--脉冲调制器;
- 2——正弦波发生器(具有脉冲调制输入功能/脉冲调制能力);
- 3——射频放大器;
- 4——可变衰减器(可选);
- 5——定向耦合器;
- 6——功率计或示波器。

图 C. 1 脉冲正弦波骚扰发生器结构的实现

C. 2. 2 脉冲A (脉冲正弦波骚扰)线一线耦合的耦合平衡一不平衡转换器(表面电流滤波器)

为了线一线耦合的快速瞬态抗扰度试验,可使用 ANSI C37.90.1:2012 附录 D 规定的或等效的平衡-不平衡转换器。

图 C.2 示出了一个简单的传输线变压器用于不平衡模式到平衡模式的转换。平衡侧的两个端子需要端接到地的 50Ω 。

1——铁氧体磁环(2片,叠放)A_i=5400nH/匝数², 2×AL×256 =大约 2.75mH, 内径 39mm, 外径 60mm, 磁芯厚度 2×18mm:

2——16 匝的 50Ω同轴电缆(推荐: RG402 或类似电缆)绕在 2 个叠放的磁环上。

图 C. 2 不平衡/平衡传输线变压器的示例

C. 2. 3 试验发生器(脉冲B,低频正弦波骚扰)

产生正弦试验信号:

- —频率范围: 3kHz~300kHz;
- ——频率步长:如果没有线性或对数扫描,则试验设备应能每十倍频产生几个频率(见表 A.2)。 每个频率的脉冲持续时间应至少为 2s;
 - ——电压能力: 3kHz~250kHz: 30V (rms), 250kHz~300kHz: 20V (rms);
 - ——电流能力: 16A (rms)。

C. 2.4 脉冲B(低频正弦波骚扰)耦合HV+或HV-以及HV+或HV-与地之间的耦合网络

耦合变压器用于将要求的骚扰耦合给 DUT。该变压器还有助于将低频发生器与 DUT 进行直流隔离, 其额定电流需适合 DUT,并能耦合 3kHz~300kHz 的低电源频率。

试验应在线一地模式和单线串联模式下进行。

参考文献

ANSI C37.90.1:2012, IEEE Standard for Surge Withstand Capability (SWC) Tests for Relays and [1] Relay Systems Associated with Electric Power Apparatus

21